A New Image Quality Metric Using Compressive Sensing and a Filter Set Consisting of Derivative and Gabor Filters

نویسندگان

  • Dong-O Kim
  • Rae-Hong Park
چکیده

This paper proposes an image quality metric (IQM) using compressive sensing (CS) and a filter set consisting of derivative and Gabor filters. In this paper, compressive sensing that is used for acquiring a sparse or compressible signal with a small number of measurements is used for measuring the quality between the reference and distorted images. However, an image is generally neither sparse nor compressible, so a CS technique cannot be directly used for image quality assessment. Thus, for converting an image into a sparse or compressible signal, the image is convolved with filters such as the gradient, Laplacian of Gaussian, and Gabor filters, since the filter outputs are generally compressible. A small number of measurements obtained by a CS technique are used for evaluating the image quality. Experimental results with various test images show the effectiveness of the proposed algorithm in terms of the Pearson correlation coefficient (CC), root mean squared error, Spearman rank order CC, and Kendall CC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysis

We present a new method to detect and remove ringing artifacts produced by the deconvolution process in image deblurring techniques. The method takes into account non-invertible frequency components of the blur kernel used in the deconvolution. Efficient Gabor wavelets are produced for each non-invertible frequency and applied on the deblurred image to generate a set of filter responses that re...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Qualitative evaluation of filter function in brain SPECT [Persian]

Introduction: Filtering can greatly affect the quality of clinical images. Determining the best filter and the proper degree of smoothing can help to ensure the most accurate diagnosis. Methods: Forty five patient’s data aquired during brain phantom SPECT studies were reconstructed using filtered back-projection technique. The ramp, Shepp-Logan, Cosine, Hamming, Hanning, Butterworth, Metz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015